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1 Objectives

The aim of this project is to develop good VSA implementations of Next Generation Reservoir
Computing (Gauthier et al. 2021). The sought outcomes are:

• A good, practical multivariate dynamical system predictor;

• Further theoretical development of VSA through exposure of current understanding to
new practical problems. (I view theoretical development as being about finding produc-
tive interpretations/extensions of the abstract basis of VSA.)
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2 Statistical feature construction

2.1 What does Reservoir Computing do?

Reservoir computing uses a recurrently updated reservoir to create a representation vector
from a sequence of input values. The reservoir value is transformed to predictions by a simple
linear readout transformation, for example see (Gauthier et al. 2021, fig. 1).

2.2 Interpretation as statistical feature construction

The linear readout is equivalent to the application of a standard statistical regression model.
A standard univariate regression model is effectively the calculation of the dot product of the
vector of regression coefficients and the vector of predictor values. A multivariate regression
is the concatenation of multiple univariate regressions (so the vector of regression coefficients
becomes a matrix of regression coefficients). Under this interpretation, the reservoir is con-
structing the vector of predictor values to be input to the regression model.

2.3 VSA representation of predictors

In standard statistics/ML the representation of predictor values is localist. However, in VSA
the natural form of representation is distributed key-value pairs, with the key corresponding
to the identity of the predictor and the value corresponding to the value of the predictor
(Kanerva 1997). I think that the distributed representations can be viewed as rotations of a
localist representation (Qiu, n.d., sec. 6.1).

It’s also worth noting that in standard statistics/ML the value of a predictor is represented as
the scalar value of the predictor variable. This can be directly implemented by representing
the value of the predictor variable by the magnitude of the hypervector (e.g. Kleyko, Frady,
et al. (2022), sec IV.A.2). Note that this represents the predictor as a key rather than a
key-value pair. An alternative is to represent the value of a predictor by the direction of a
hypervector (e.g. by Fractional Power Encoding).

2.4 Theory of sequence indexing

The theory of sequence indexing and working memory in recurrent neural networks (Frady,
Kleyko, and Sommer 2018) appears to be very relevant to this project, but I haven’t read it in
detail yet. On the basis of a quick skim this project appears to differ by stressing the algebraic
interpretation of the action of the reservoir update. In this project we interpret the reservoir
update as algebraic VSA operations.
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2.5 Integer Echo State Network

We’ll start by applying this lens (algebraic interpretation of the reservoir update) to the Integer
Echo State Network. The reservoir update equation (Kleyko, Frady, et al. 2022, eqn. 5) is:

x(𝑛) = 𝑓𝜅(𝑆ℎ(x(𝑛 − 1), 1) + uHD(𝑛) + yHD(𝑛 − 1))

where x(𝑛) is the value of the hypervector representing the state of the reservoir at time 𝑛; 𝑓𝜅()
is the clipping function applied to the reservoir hypervector; 𝑆ℎ(x(𝑛 − 1), 1) is the application
of a cyclic shift (by one element) permutation to the value of the reservoir hypervector at the
previous time step (𝑛 − 1); u𝐻𝐷(𝑛) is the hypervector encoding of the input vector at time 𝑛;
y𝐻𝐷(𝑛 − 1)) is the is the hypervector encoding of the output vector at the previous time step
(𝑛 − 1); and + is hypervector addition (bundling).

Simplify the equation and notation a little for ease of exposition:

• Drop the clipping function 𝑓𝜅() (equivalent to setting the clipping threshold 𝜅 to a high
value).

• Replace the cyclic shift function 𝑆ℎ() with a generic, fixed permutation function P().
• Drop the HD superscripts from the input and output hypervectors by interpreting u(𝑛)

and y(𝑛 − 1)) as the hypervector encodings of the input and output vectors at their
respective time steps.

• Drop the output hypervector y(𝑛 − 1)) because the input hypervector u(𝑛) can be in-
terpreted as including the output values.

The simplified equation is:
x(𝑛) = P(x(𝑛 − 1)) + u(𝑛)

2.6 Expand repeated application of the reservoir update equation

Trace out the repeated application, starting from time 𝑛 = 0 with an empty reservoir, x(0) = 0,
where 0 is the additive identity hypervector.

𝑛 = 0 ∶ x(0) = 0

𝑛 = 1 ∶ x(1) = P(x(0)) + u(1)
= P(0) + u(1)
= 0 + u(1)
= u(1)

𝑛 = 2 ∶ x(2) = P(x(1)) + u(2)
= P(u(1)) + u(2)

𝑛 = 3 ∶ x(3) = P(x(2)) + u(3)
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= P(P(u(1)) + u(2)) + u(3)
= P2(u(1)) + P(u(2)) + u(3)
= P2(u(1)) + P1(u(2)) + P0(u(3))
This is a standard VSA idiom for representation of a sequence of values (Kleyko, Rachkovskij,
et al. 2022, eqn. 17). The representation is equivalent to a set of predictors, each of which
is a lagged copy of the input values. For example, the P2(u()) term represents the value of
the input two time steps earlier. All the permutations are orthogonal, so the permutations
effectively constitute the identities of the predictor variables. This means that the integer Echo
State Network is restricted to modelling the outputs as weighted sums of the lagged inputs.

A somewhat subtle point is that this reservoir update is not directly representing the sequence
𝐴 → 𝐵 → 𝐶 as successor relations, rather it is indicating when the states occurred (relative
to the current state) and the successor relationships are implicit in the state times.

Note that the form of the result resembles a polynomial with the powers of the permutation
corresponding to the powers of the variable of the polynomial and the input values correspond-
ing to the coefficients of the polynomial. Note also that the result is iteratively built up, one
input value at a time by transforming the result so far to reflect it’s updated role and bundling
in the next input value.
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3 Polynomial feature construction

3.1 What does Next Generation RC do?

Next Generation Reservoir Computing replaces the recurrent reservoir calculations with the
direct calculation of products of delayed input values (Gauthier et al. 2021, fig. 1). This is
justified by a universal approximator result showing that the NGRC is equivalent to traditional
RC. The NGRC authors see the advantage of this as being the elimination of the reservoir, in
particular, the random matrix implementing the reservoir update,

From the point of view of a statistical modeller, NGRC is constructing polynomial interaction
features from the input stream to use as predictors in a simple regression model. We investigate
how to create equivalent VSA polynomial interaction features using VSA mechanisms.

3.2 RC as incremental construction of predictors

We could create a desired set of polynomial predictors in one step, but this would require
knowing which specific predictors are required and would require dedicated VSA circuitry for
each predictor to be constructed. Instead, we will use a reservoir update circuit to construct
all the polynomial predictors incrementally.

Note that the NGRC objection to the reservoir was actually to the random matrix. The VSA
reservoir update does not use a random matrix so we don’t have the tuning problems identified
by the NGRC authors.

VSA reservoir update relies on superposition and distributivity to construct many predictors
in parallel, so it requires much less hardware than dedicated hardware for each predictor.

Also, note that because of the incremental update the predictor terms are constructed on a
specific order. The simplest terms are constructed first and more complex terms later (with
smaller magnitude). This constitutes an inductive bias to use lower order terms.
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4 VSA polynomial reservoir update

4.1 Develop polynomial update formulae

4.2 (𝑥 + 1)𝑛

Base the first attempt at the reservoir update on the polynomial (𝑥 + 1)𝑛. Take the simplified
update equation (where × is hypervector multiplication (binding)):

x(𝑛) = (x(𝑛 − 1) + 1) × (u(𝑛) + 1)

Trace out the repeated application of the reservoir update equation, starting from time 𝑛 = 0
with an empty reservoir, x(0) = 0.

x(0) = 0

x(1) = (x(0) + 1) × (u(1) + 1)
= (0 + 1) × (u(1) + 1)
= 1 × (u(1) + 1)
= u(1) + 1

x(2) = (x(1) + 1) × (u(2) + 1)
= (u(1) + 1 + 1) × (u(2) + 1)
= u(1) × u(2) + 2 ⋅ u(2) + u(1) + 2 ⋅ 1

x(3) = (x(2) + 1) × (u(3) + 1)
= (u(1) × u(2) + 2 ⋅ u(2) + u(1) + 2 ⋅ 1 + 1) × (u(3) + 1)
= (u(1) × u(2) + 2 ⋅ u(2) + u(1) + 3 ⋅ 1) × (u(3) + 1)
= u(1)×u(2)×u(3)+2⋅u(2)×u(3)+u(1)×u(3)+3⋅u(3)+u(1)×u(2)+2⋅u(2)+u(1)+3⋅1

where “⋅” is for clarity when multiplying a scalar by a hypervector.

This reservoir update forms product and cross-product terms from lagged values of the input.
It retains the old terms across iterations and adds new terms at each iteration.

Note that this update probably can’t be used directly with self-inverse VSA schemes (e.g. BSC
or MAP) because the multiplied terms would self-cancel. This update could be probably be
used with self-inverse VSA schemes if the terms were permuted at each iteration.

To a first approximation the different scalar multipliers of the terms are irrelevant because all
the terms will be multiplied by scalar coefficients in the regression readout. These readout
coefficients can compensate for arbitrary scalar multipliers of the terms.
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The scalar multipliers determine the relative magnitudes of the hypervectors corresponding
to the algebraic terms. Given that the magnitude of the reservoir hypervector will almost
certainly be normalised, this means that the terms with the smallest scalar multipliers will
have the smallest smallest magnitudes. This raises the possibility that terms with very small
magnitudes may become effectively invisible in the noise of the VSA system.
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4.3 Multiplicative identity (1) and copy arcs

The multiplicative identity (1) is in the update formula to copy terms across iterations. The
update formula above generates a 1 term as an additive component of the reservoir hypervec-
tor at every iteration. This term is uninformative with respect to variation of the predictions.
Given that some of the magnitude of the reservoir hypervector is used by the 1 term, that
the magnitude of the reservoir hypervector is almost certainly normalised, and that the im-
plementation will be noisy, the presence of the 1 term reduces the information capacity of the
reservoir hypervector.

It would be interesting to see if a polynomial reservoir update can be constructed without
using the multiplicative identity term (1). The key observation here is that binding with
the multiplicative identity term is effectively a copy operation in the data VSA flow graph.
Translate the reservoir update equation x(𝑛) = (x(𝑛 − 1) + 1) × (u(𝑛) + 1) to a VSA data
flow graph.

The circle nodes correspond to VSA operators: binary addition and multiplication, unary
delay, and the multiplicative identity constant value. The arrows between nodes correspond
to transfers of hypervectors. Some of the arrows are labelled with the corresponding terms in
the update equation. The blue arrows correspond to the (u(𝑛) + 1) term and the red arrows
correspond to the (x(𝑛 − 1) + 1) term, which will be simplified later.

The purpose of the 1 in (u(𝑛) + 1) is to copy x(𝑛 − 1) into the result. This means that the
updated result starts as a copy of the previous value of the result.

The purpose of the 1 in (x(𝑛 − 1) + 1) is to copy u(𝑛) into the result. This means that the
current input is added in to the updated result.

The other term added into the result is x(𝑛 − 1) × u(𝑛).
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Figure 1: x(𝑛) = (x(𝑛 − 1) + 1) × (u(𝑛) + 1)
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In the next VSA data flow graph these three terms are calculated directly and added to form
the result. This graph corresponds to the reservoir update equation: x(𝑛) = x(𝑛−1)+u(𝑛)+
u(𝑛) × x(𝑛 − 1)

Figure 2: x(𝑛) = x(𝑛 − 1) + u(𝑛) + u(𝑛) × x(𝑛 − 1)

Trace out the repeated application of the reservoir update equation, starting from time 𝑛 = 0
with an empty reservoir, x(0) = 0.

x(𝑛) = x(𝑛 − 1) + u(𝑛) + u(𝑛) × x(𝑛 − 1)

x(0) = 0

x(1) = x(0) + u(1) + u(1) × x(0)
= 0 + u(1) + 0
= u(1)

x(2) = x(1) + u(2) + u(2) × x(1)
= u(1) + u(2) + u(2) × u(1)

x(3) = x(2) + u(3) + u(3) × x(2)
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= (u(1) + u(2) + u(2) × u(1)) + u(3) + u(3) × (u(1) + u(2) + u(2) × u(1))
= u(1) + u(2) + u(2) × u(1) + u(3) + u(3) × u(1) + u(3) × u(2) + u(3) × u(2) × u(1)
This generates all the interactions of increasing order.
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4.4 Reservoir update with permutation

I noted earlier that permutation would be required if we tried to use a self-inverse VSA scheme
with this kind of reservoir update that generates products of terms. Note that the interaction
terms generated above are unordered because of the commutativity of the product operator.
If we used a noncommutative product then we wouldn’t need to use permutation to capture
the the ordering of the terms.

An interesting case occurs when we use Fractional Power Encoded scalar values as inputs. FPE
encoded values are equivalent to vectors and the product of FPE encoded values is equivalent
to vector addition of the component vectors. The result is the same regardless of the order in
which the vectors are added. If the order of the vector values is important for the problem
being solved by the reservoir computer (e.g. in navigation where the path to the destination
is important, rather than the location of the destination) then we need to encode the vectors
in a way that is sensitive to the order, for example by applying permutation powers to the
vectors.

There is probably no single “right” way to construct a reservoir update and we will need to
design it to meet the requirements of the current task. Let’s do that here. We’ll take the
previous reservoir update equation and modify it to meet some (ambiguous and ill-defined)
objectives.

We will assume that the input stream is FPE-encoded vectors and that the sequence of vectors
is a reasonable predictor of the outcome. We will also assume that polynomial terms of the
predictors are important predictors.

The previous update equation created output terms that were direct copies of prior input
terms. This is effectively claiming that input values are good predictors regardless of when
they occurred in the past. Let’s assume that is likely to be incorrect, so we need to modify
the update equation to prevent the repeated direct copying of inputs across generations. We
attempt to do this by deleting the arrow between the delay node and the addition node.

We believe the successor relation is predictive, so need to bind successor states and apply the
“before” permutation 𝑃𝑏𝑒𝑓 to the representation of the earlier state. We do this by inserting
the permutation node 𝑃𝑏𝑒𝑓 into the arrow between the delay node and the product node.

This graph corresponds to the reservoir update equation: x(𝑛) = u(𝑛)+u(𝑛)×P𝑏𝑒𝑓(x(𝑛−1))
That is, the current state consists of the current input plus the encoded sequence of states
leading to the current state.

Trace out the repeated application of the reservoir update equation, starting from time 𝑛 = 0
with an empty reservoir, x(0) = 0.

x(𝑛) = u(𝑛) + u(𝑛) × P𝑏𝑒𝑓(x(𝑛 − 1))
x(0) = 0
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Figure 3: x(𝑛) = u(𝑛) + u(𝑛) × P𝑏𝑒𝑓(x(𝑛 − 1))
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x(1) = u(1) + u(1) × P𝑏𝑒𝑓(x(0))
= u(1) + u(1) × P𝑏𝑒𝑓(0)
= u(1) + u(1) × 0
= u(1) + 0
= u(1)

x(2) = u(2) + u(2) × P𝑏𝑒𝑓(x(1))
= u(2) + u(2) × P𝑏𝑒𝑓(u(1))

x(3) = u(3) + u(3) × P𝑏𝑒𝑓(x(2))
= u(3) + u(3) × P𝑏𝑒𝑓(u(2) + u(2) × P𝑏𝑒𝑓(u(1)))
= u(3) + u(3) × (P𝑏𝑒𝑓(u(2)) + P𝑏𝑒𝑓(u(2)) × P2

𝑏𝑒𝑓(u(1)))
= u(3) + u(3) × P𝑏𝑒𝑓(u(2)) + u(3) × P𝑏𝑒𝑓(u(2)) × P2

𝑏𝑒𝑓(u(1))

This reservoir generates all the sequences of input values of increasing length.

Obviously there is plenty of scope for modifying the update equation to generate different
predictors.
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5 Feature fading

In general every iteration through the reservoir update equation can add more terms to the
reservoir state. This can continue arbitrarily long, so the reservoir state can become arbitrarily
complex (when viewed as algebraic terms).

You might think this would cause problems because the number of features keeps increasing
and because it implies infinite memory (terms hanging around forever). In practice this is
not an issue because the magnitudes of the terms decrease over time because of the bundling
update. Eventually the terms will have such a low magnitude that they are effectively lost in
the system noise.

5.1 Nonassociative bundling

Bundling (as implemented, rather than as a mathematical abstraction) loses information. The
more times a term has passed through bundling, the more information it has lost. This is
reflected in the reducing magnitude of the hypervector representing the algebraic term.

This is most obvious when you consider randsel bundling (Gayler 2022; Heddes et al. 2022). In
randsel bundling each output element is selected at random from the corresponding elements of
the argument hypervectors. With two arguments and equal selection probability only half the
elements are copied from each argument hypervector to the result hypervector. Consequently,
the hypervector representing each algebraic term has half it’s original magnitude. Thus, the
half-life of each term in the reservoir would be one time step.

5.2 Weighted bundling

Note that the bundling operator doesn’t have to be binary, it can have an arbitrary (but
generally small) number of arguments. We can also associate a positive scalar weight with
each argument that controls the relative contribution of that argument to the result.

For example in Figure 2, the bundling operator has three arguments. This could be im-
plemented as weighted bundling and the weights used to control the relative magnitudes of
the arguments in the result. Increasing the weight of the x(𝑛 − 1) term would increase the
magnitude of the current reservoir state preserved in the next state and therefore extend the
retention duration of the reservoir (at the cost of decreasing the relative magnitudes of the
u(𝑛) and (u(𝑛) × x(𝑛 − 1)) added in at each time step).
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5.3 Bundled inputs

The preceding discussions might have given the impression that the input stream (u(𝑛)) con-
sists of atomic vectors. However, the joy of VSA is that everything is just a hypervector value,
so the input stream could be arbitrarily complicated values. In particular the input stream
could consist of the sum of the input and output streams used in classical RC, and weighted
bundling could be used to control their relative contributions.
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6 Development suggestions

The following points are directions that might be worth investigating.

6.1 Input/hierarchical encoding

It might be advantageous to construct sequence representations in the input streams rather
than in the reservoir update. This might be equivalent to hierarchical reservoirs. We could
have input-stream-specific reservoirs that create input sequence representations and a stream
fusion reservoir (or maybe stream fusion doesn’t need the recurrent update).

6.2 Intercept term

Reservoir readout is performed by a weighted sum (effectively a regression model). Statistical
regression normally allows for an intercept (bias) term and the goodness of fit can depend
strongly on whether an intercept term is included in the readout model.

Typical statistical regression software normally constructs the intercept term implicitly rather
than requiring it to be explicitly present as a predictor. Depending on how the readout has
been implemented in some VSA RC model it is possible that the intercept term has not been
included.

• For any specific VSA RC implementation, check on how the intercept term is treated in
the reservoir readout (both in training and prediction).

• If readout is performed by standard regression (including ridge regression) it can be im-
plemented by concatenating a single constant 1 element to the RC reservoir hypervector.

• If readout is implemented by VSA bundling it is only necessary to ensure that the
reservoir hypervector contains a multiplicative identity hypervector term (1).

6.3 Bundling and capacity

The discussion of feature fading and weighted bundling shows that we need a better treatment
of bundling and capacity than just considering the number of items that are included in the
bundle. It’s not just the number of superposed items, which can be changed arbitrarily by
algebraic re-arrangement. Also, a 𝑑-dimensional HRR binding is equivalent to the sum of 𝑑
many MAP bindings, but only counts as one item in the traditional capacity analysis.
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6.4 Warm up

Standard RC uses a warm-up to allow the reservoir state to get past any transient states
arising from the initial value of the reservoir.

• Investigate the impact of initial values on the length of required warm-up. In the formulae
above I used zero hypervector initial values. Other possibilities are the one hypervector
and a randomly selected hypervector. Another reasonable choice might be to randomly
select a value from the set of reservoir values seen after warm-up. I would be interesting
to investigate how long it takes the reservoir to synchronise to the new input.

• Investigate whether it is possible to read-out from the reservoir during the warm-up
phase. A realistic environment is non-stationary, so arguably there is a continual stream
of (partial?) re-starts. There would be an evolutionary advantage to the readout being
useful, regardless of how recently the system had been restarted.

6.5 Dynamic readout

Rather than having a fixed-weight readout mechanism, is it possible to have a readout mech-
anism that varies in response to the task demands at readout time? This might be related to
avoidance of catastrophic forgetting (e.g. French (1994)) and generalisation at recall rather
than in a separate training phase (e.g. Shabahang, Yim, and Dennis (2022)).

6.6 Dynamic update

Continuing the same theme of making RC mechanisms dynamic, it might be possible for the
update formula to change dynamically to indefinitely preserve the contents of the reservoir
as a working memory and to emphasize representational components that are most relevant
to the current task. For example, it might be appropriate to insert a dynamically updated
cleanup memory in the reservoir update loop.

Another point to consider is whether to include gating in the reservoir update loop, so that
the reservoir is only updated when there are material changes in the environment rather than
every time step.
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